Praktyczny przykład obliczania wyrażenia, w którym występują obok siebie pierwiastki i funkcje potęgowe. W tym przypadku obliczamy wyrażenie 6^(1/2)⋅(⁵√6)³. Stworzone przez: Sal Khan. Pierwiastek w obliczeniach oznacznamy symbolem - √. Należy pamiętać, że √a = b wtedy i tylko wtedy, gdy b² = a (a ≥ 0, b ≥ 0) Warto zaznaczyć, że liczbą pod pierwiastkiem i wynikiem pierwiastkowania zasze jest dodatnia liczba. Istnieje również możliwość obliczania pierwiastków wyższego stopnia np. 3-ciego stopnia. Oblicz wartość wyrażenia: Nie wiesz, jak rozwiązać to zadanie? Obejrzyj film/przeczytaj artykuł na ten temat lub użyj wskazówki. Ucz się za darmo matematyki, sztuki, programowania, ekonomii, fizyki, chemii, biologii, medycyny, finansów, historii i wielu innych. Khan Academy jest organizacją non-profit z misją zapewnienia darmowej about 14 years ago Matematyka Szkoła podstawowa a). pierwiastek z 2 * pierwiastek z 4 1/2 b). pierwiastek z 2 2/3 : pierwiastek z 2/3 c). pierwiastek z 6,4 : pierwiastek z 10 d).pierwiastek do potęgi 3 z 10 * pierwiastek do potęgi 3 0,1 +0 pkt. Odpowiedzi: 2 about 14 years ago A)2 B)4/3 C)8 D)1 Aniela Expert Odpowiedzi: 549 0 people got help Aby obliczyć pierwiastek sześcienny, należy użyć wzoru 3 √a, a pierwiastek czwarty oblicza się za pomocą wzoru 4 √a. Podobnie, aby obliczyć pierwiastek piąty, należy użyć wzoru 5 √a . 10upWd.